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Director fluctuations in nematic liquid crystals 

by T. E. FABER 
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, England 

(Received 6 September 1989; accepted I S  August 1990) 

The literature of the past two decades suggests that confusion persists concern- 
ing the role of director fluctuations in the theory of nematics. Are these fluctu- 
ations necessarily small? If so, the fluctuation spectrum must terminate at a 
wavevector qc which is of the order of 10"m-', yet fluctuation mpdes with 
wavevectors in excess of lo9 m-- '  are commonly invoked to explain, for example, 
the frequency dependence of N M R  relaxation rates. If the cut-off wavevector 
exceeds lo9 m-' and the fluctuations are not small, are their effects included in 
standard theories of nematic disorder, or should those theories be renormalized in 
some way to allow for them? Can we turn to experimental data for nematics, or 
to the results of computer simulations, in order to learn where qc lies? This paper 
suggests answers to these questions, based upon an elementary definition of the 
director which can be applied to groups of molecules of any size, not necessarily 
macroscopic. In the course of the argument some widely accepted ideas about 
nematics are challenged, in particular: (i) the idea that mean field theories of the 
Maier-Saupe type provide an adequate description of them; (ii) the idea that, in 
so far as mean field theories are not exact, their deficiencies may be rectified by the 
cluster-expansion approach; (iii) the idea that the processes whcreby molecules in 
a nematic undergo large changes in orientation, and from time to time experience 
end-to-end inversion, are essentially distinct from director fluctuations, which d o  
no more than gently rock the cage within which the molecule is constrained. 

1. Introduction 
Nematic liquid crystals consist of rod-like molecules which are partially aligned, 

and the direction of the axis of alignment is conventionally described by a unit 
vector n which is known as the director [ I ] .  The director can be manipulated to 
some extent, by treating the solid surfaces between which the nematic is contained 
and by applying magnetic or electric fields. However, no matter how much care is 
taken to produce single crystals of a nematic, i.e. specimens in which n is uniform 
throughout, they are always milky in appearance. This characteristic milkiness is a 
sign that n is not uniform but is fluctuating in space and time about its mean 
orientation (n), due to thermal agitation that even the strongest available fields 
cannot suppress. 

There exists a theory of light scattering by nematics which gives quantitative 
agreement with experimental observations [2,3]. It is based on the premise, first 
enunciated by the Orsay Group [4], that director fluctuations in a specimen for which 
(n) is uniform may be analysed in terms of a set of periodic distortion modes (see also 
[5 ] ) .  Each mode is associated with rotation of n about an axis perpendicular to (n) 
through an infinitesimal angle II/ which varies sinusoidally with wavevector q. In the 
one-constant approximation, where no distinction is made between the Frank con- 
stants for splay, twist and bend, all three being represented by the same symbol K, the 
mean square amplitude of each mode in thermal equilibrium at temperature T in a 
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96 T. E. Faber 

specimen of volume V is 

kT 
( $ 2 )  = W' 

The addition theorem for spherical harmonic functions implies [6] that excitation of 
many modes should tilt the director through an angle S which may be finite, such that 

If terms of order S4 are negligible, though not otherwise, equation (2)  reduces to 

<S2> = 1 ($'>. (3) 
mods 

Since there are V/(2n)' allowed values of q per unit volume of q space and two 
polarizations for each of them, it follows from equations ( 1 )  and (3) that the mean 
square tilt due to excitation of all modes for which q lies within a sphere of radius qc 
should be given approximately by 

The degree of alignment of the molecules in a nematic is conventionally described, 
in terms of the angles (fl,4) which denote the orientations of their long axes relative 
to (n), by an order parameter 

s = (p2(cose)), ( 5 )  

and this quantity is liable to be reduced by director fluctuations. That is to say, if the 
director fluctuations could in some way be suppressed the order parameter would rise 
to a higher value So related to S by the equation 

s = S0(P2(C0S6)) = So(1 - +(&')). (6) 

The idea that director fluctuations might be suppressed may seem an artificial one. It 
may be avoided if preferred by defining So in terms of equation ( 5 )  but with the 
average restricted to regions of space, and to periods of time, within which the 
fluctuating angle 6 happens to be zero, so that n and (n) coincide. The proof of 
equation (6) depends upon the fact that all values of the azimuthal angle are equally 
likely when n and (n) coincide and requires, once again, the addition theorem. 

Results equivalent to those in equations (1)-(6) are to be found in many places in 
the literature [6-91 though they are sometimes expressed in terms of the x and y 
components of n (the z axis being chosen to coincide with (n)) rather than in terms 
of angles. They evidently command fairly general acceptance. There seems to be 
rather little agreement, however, about the answers to two questions which arise out 
of them, namely what value should be chosen for the cut-off wavevector qc,  and do 
theories which purport to predict the nematic order parameter include the effects of 
director fluctuations or not? These are the questions to be addressed in #2-5, the 
second of them with particular reference to the hierarchy of cluster expansion theories 
of which the well-known and widely-used theory of Maier and Saupe is the first and 
simplest member. 

The ideas propounded, few of which are particularly novel, form the basis for 
some comments in 9;9; 6 , 7  and 8 on various attempts that have been made to determine 
the magnitude of ( S 2 ) ,  or else of qc ,  either from experimental data for real nematics 
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Director fluctuations in nematics 97 

or from computer simulation data for the well-known lattice model associated with 
the names of Lebwohl and Lasher, which is frequently referred to throughout the 
paper. Section 9 contains a digression concerning the relaxation time for end-to-end 
inversion of molecules, which determines the dielectric dispersion properties of 
nematics. The principal conclusions are summarized in 5 10. 

2. The wavevector cut-off 
Several authors make the assumption, in some cases apparently on principle [lo] 

and in others from a desire to simplify [ l l ,  121, that 6 is small enough for terms of 
order h2 to be neglected. This attitude implies that (S2)  is less than say which 
in turn implies, though this is not always recognized, a cut-off at or below say 10' m-I, 
i.e. not very far beyond the range of q for which experimental evidence for director 
fluctuation modes is provided by light scattering experiments. Authors who belong to 
this group do not contend that motions which contribute to the molecular misalign- 
ment on a finer scale do not exist, but they believe the fine-scale motions to be 
distinguished from director fluctuations in some way, e.g. by being more rapid 
[l 1,131, and therefore to require separate discussion. 

However, we have independent evidence for the existence of director fluctuations 
from the anomalous dependence of the nuclear magnetic relaxation time TI on the 
strength of the magnetic field Bin which it is measured, i.e. on the resonant frequency 
v,, = (yB/271). For nematic materials l /T l  seems to contain a term which varies like 
v" [14,15], and an explanation for this in terms of director fluctuations was first 
provided by Pincus [16]. Pincus treated qc as effectively infinite, but in subsequent 
analyses of NMR data for nematics it has usually been treated as one of a number 
of adjustable parameters [ 17-19], and the values needed to secure reasonable agree- 
ment with experimental data seem to be of the order of where a is a length 
representing the mean dimensions of a molecule. Throughout the present paper we 
shall define a in terms of the number of molecules N in volume V by 

a3 = V / N ,  (7) 

and a typical value for it wouid be 8 x lo-'' m. Hence there exists a second group 
of authors for whom qc is lo9 m or more, i.e. for whom ( 6 ' )  is over 0.1 and by no 
means negligible. Which group is right? 

The answer must surely depend to a great extent upon just how the director is to 
be defined, in circumstances where it may be a function of both position R and time 
t .  Most texts are a trifle vague on this matter. They suggest that if we insist on 
specifying t precisely then we must define n(R, t )  by reference to the molecules in a 
macroscopic volume around R, but just how large, or how small, this volume needs 
to be is not made clear. Does it have to be large enough for us to be able in principle 
to measure some bulk property such as the birefringence or the dielectric anisotropy 
within it and to infer the orientation of n from that? If so, should it include 10 
molecules, or 100, or 1000, or what? 

This philosophy behind the present paper is that we can define n(R,t) on any 
resolution that we choose. Given the set of angles (O,, 4,) ( i  = 1,2,. . . , m) which 
describe the instantaneous orientations relative to (n) of all the m molecules in the 
volume of our choice, whether it be macroscopic or microscopic, the direction of n(t)  
within this volume is surely such as to maximize the quantity 

m 

q) = C P~(COSB'(~)),  
i = l  
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98 T. E. Faber 

where 8’ denotes the inclination of the ith molecule relative to n rather than (n). The 
larger rn is, the smaller the fluctuations of n appear to be, and in the limit rn -+ oc) 

they disappear entirely. Now if a specimen which contains N molecules in all is to be 
treated as an assembly of (N/rn)  separate domains, within each of which n(t)  may take 
a different value, we require 2(N/rn) angles to specify the director field completely. In 
that case there cannot be more nor less than 2(N/rn) independent distortion modes for 
the director. If the domains are chosen to be cubes of sides (rn’I3a), say, stacked 
together to form a simple cubic lattice, then the allowed values of q for these modes 
will occupy a cubic Brillouin zone of side (2x/rn’l3a) [13], and there are other shapes 
of Brillouin zone associated with other choices of domain shape. It should in many 
circumstances be an adequate approximation, however, to regard the allowed values 
of q as occupying a spherical region in q space, and in that case the radius of the 
sphere must be such that 

2V 4x 2N 
(2x13 3 ‘C rn ’ 

q,a = (6x2/rn)”’. (9) 

- -  - -- 

or that 

In a series of previous papers [6,20-241, the present author has put forward a 
theory of nematic alignment, or misalignment, in which this definition of n is pursued 
to the limit in which rn = 1. In this limit, the way to maximize the quantity expressed 
by equation (8) is to choose n to coincide with the long axis of the single molecule 
within each domain. The quantity So becomes unity, and renormalization for the 
effects of director fluctuations using equation (6) is essential; the fact that Sis  less than 
unity is entirely attributable to these fluctuations. The cut-off wavevector q, is about 
4/a, or say 5 x lo9 m-’ in a typical case. That corresponds, according to equation (4), 
to values of (6’) as large as 0.5. This theory has the merits of internal consistency and 
relative simplicity, but some of the predictions which it yields are evidently not 
fulfilled at temperatures near T,,  where S is normally about 0.4. Factors which may 
be responsible for its failure in this region have been pointed out elsewhere [6]. The 
theory works extremely well, however, when applied to simple lattice models of 
nematics for which results have been obtained by computer simulation techniques, at 
temperatures such that S is greater than about 0.75 [22,24]. This limited success 
suggests that in one respect at  least the theory is essentially correct: that is to say, in 
its basic premise that the spectrum of the molecular motions in a nematic is con- 
tinuous in its variation with q, all the way from zero to its final cut-off at about 4/u. 

Admittedly, we cannot rely on equation (1) at microscopic wavelengths, unless K 
is allowed to vary with q so as to make it work. That however, is a relatively trivial 
problem, for which correction is possible. For the simple cubic Lebwohl-Lasher 
lattice model [ 5 ] ,  for example, we expect [22] 

and this ratio varies with q in a smooth and undramatic way. This is nothing in it to 
suggest that the picture which explains light scattering experiments in terms of 
distortion modes with q values in the neighbourhood of 10‘ or IO’m-’ becomes 
totally inappropriate when q is lo9 rn-’ or more. And just as the spectrum seems to 
be a smooth one in terms of wavevector, so also it seems to be smooth in terms of 
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Director fluctuations in nematics 99 

angular frequency, w .  It has been recognized since, the work of the Orsay Group [4], 
that the modes are overdamped, and that 

where q is an appropriate viscosity coefficient. Thus if the spectrum is continuous in 
q up to about 4/a  it should be continuous in w up to about 16(K/qd), which may 
amount in a typical case to about 3 x lO'*s-'. Such frequencies should be high 
enough to describe the rocking or tumbling motions of individual molecules. Thus we 
have no obvious need to postulate the existence of modes of motion distinct from 
director fluctuations that are faster still, quite apart from the fact that if qc is to be set 
equal to 4 /a  there are no orientational degrees of freedom left over to be allocated to 
such modes. 

As far as the magnitude of qE is concerned, therefore, we shall side with those who 
believe it to be of the order of up' rather than with those who maintain, if only by 
implication, that it must be small enough to make (a2) < 1. The remarks in the 
previous paragraph suggest, however, that the theoretical models which have been 
used to fit NMR data for nematics are not entirely trustworthy, and that values for 
qc which have been estimated by using these models may be of limited significance. We 
shall return to this point in 5 7. 

3. Director fluctuations in the Maier-Saupe theory 
We now turn to the second of the two questions posed in the introduction, the 

question of whether theories of nematic alignment take director fluctuations into 
account or not. In the context of the present author's theory, referred to in 42, the 
answer is clear, but in other contexts it is not. Warner [9], who follows Flory in 
attributing the alignment primarily to steric effects and who has developed mean field 
theories which reflect this point of view, has argued that director fluctuations are not 
included in these and that the results should therefore be renormalized using equation 
(6). The work of Masters [ 121, however, who follows Stecki and Kloczkowski [25] and 
others in framing his description of the nematic state in terms of the direct correlation 
function, suggests that such renormalization may not be needed. Here we address the 
question in the context of the simplest theory of all, that associated with the names 
of Maier and Saupe. 

This theory can be approached by several paths besides the one used in the original 
publications [26].  Perhaps the most straightforward approach is to start with a 
postulate that in so far as the hamiltonian of the system depends upon the orientational 
coordinates ( O i ,  4,) of the ith molecule it does so through a term which may be written 
as 

- U S P , ( C O S  e), (12) 

where u is a positive constant; u may be supposed to depend upon density, but here we 
shall be concerned primarily with lattice models of nematics in which the density cannot 
vary. Thus every molecule is supposed to see the same mean field US, which couples 
with P,(cos 0) in such a way as to favour alignment along the fixed direction (n). All 
values of the azimuthal angle 4 are equally likely for each molecule, and there are no 
correlations between 4, and dj .  The one particle distribution function for cos 0 is 

~ ( C O S  e) = z - I exp (USP, (COS e)/kz-), (13) 
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100 T. E. Faber 

where Z is a one particle partition function, 
I 

exp(uSP,(cos B)/kT) ~ ( c o s ~ ) .  (14) 
= I* 

The order dependent term in the internal energy of the system is 

U = -$NUS’, (15) 

where the factor 1/2 is needed because the mean field is due to pairwise interactions 
which must not be counted twice over, and the order dependent terms in the free 
energy and entropy are therefore 

F = +Nus2 - NkTlnZ (16) 

and 

+ NklnZ  = -Nk 
Nus2 

T 
_ -  

respectively. The theory predicts a first order transition to the isotropic state at a 
temperature TN, such that 

kTNl/U = 0.2202. (18) 

The order parameter may be calculated as a function of (T /TN, )  by varying it so as 
to minimize F, or else by using a familiar self-consistency condition which amounts 
to the same thing. 

It may appear at first sight that director fluctuations are entirely suppressed in the 
Maier-Saupe theory, but this is not the case if we are to define the director, as 
suggested in Q 2, by reference to the orientations which the molecules in the volume 
of interest actually adopt at time t rather than to the directions which they would most 
like to adopt. Suppose that n differs from (n) by two small angles of rotation about 
axes perpendicular to (n), an angle 6, in the plane for which 4 = 0 and an angle d2 
in the plane for which 4 = n/2. Then it follows from the addition theorem that the 
quantity C defined by equation (8) is 

m 

c = 1 {~, (cose , ) [ i  - $(# + 631 + 3sin8,cos8,[6,cos~,  + 6,sin4,] 

+ 2 sin2 e,[(s: - 6:) cos 24, + 26,6, sin 2 4 3 .  

i = l  

(19) 

In supposing that 6 ,  and 6, are small we are assuming rn to be large compared with 
unity, and it turns out that in the limit of large m the third term on the right hand side 
of (19) is irrelevant. In that case the value of 6, which maximizes C is clearly 

1 (sin 8, cos e, cos 4,) 
6 ,  = (20) 

cp2 (cos 0,) 
The angles on the right hand side of this expression change with time, of course, and 
so does 6, .  Its mean value is zero, but its mean square value does not vanish. For large 
m we find 
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Director fluctuations in nernatics 101 

and an identical result holds for (~5:). We may use the Maier-Saupe distribution 
function to establish what (sin2 Bcos2 B) is, and hence to arrive at  the result that 

2kT 
(62)  = (Sf) + (6:) = - 3rnuS2. 

It follows from equations (19) and (21) that the time average of X ( t ) ,  maximized by 
continuous variation of n throughout the period over which the average extends, is 
such that 

and if this is compared with equation (6 )  it will be seen that mp'(Zm,,) corresponds 
to the quantity referred to in the Introduction as So. All of these results are valid only 
when rn & 1. It is possible to improve upon them by expanding in powers of m ~ ' ,  but 
the results do not justify the effort required. 

It is instructive now to consider the effect on (h2) of a small change in our choice 
of m, and whether this can be explained in terms of the consequent change in the 
number of periodic modes which are needed to specify the director field completely. 
Equations (4) and (9) suggest that 

whereas equation (21) suggests that 

2kT - -  -~ d ( S 2 )  - 
dm 3m2 us2 ' 

The two results are equivalent for all rn provided that 

k T  <*') = 

for all q, but not otherwise. 
Equation (25), which implies a mean square amplitude independent of q, is 

obviously completely inconsistent with the results of conventional nematic continuum 
theory as embodied in equation (1). There is, however, no paradox here. It is well known 
that mean field theories are only exactly correct when the pairwise interactions which 
the mean field represents are of a long range nature. The Maier-Saupe theory, for 
example, is exactly correct for model nematics in which the potential energy shared by 
the ith and j th  molecules is independent of the separation R, and depends on the onen- 
tations of these molecules in such a way that after averaging over these it reduces to 

U 
- - s2. 

N 

If the interaction is of this nature, however, its average value is diminished by a factor 

(1  - W')) 
when a director fluctuation mode is excited, and the energy stored in the mode is 
therefore 

3us2  
2 - < * 2 ) .  
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102 T. E. Faber 

qa 

Contributions per unit range of qa to the mean square director fluctuation at T* = 1. (a) The 
Maier-Saupe theory; (b)  the Lebwohl-Lasher model, with short range interaction. 

We may deduce the mean square mode amplitude by equating this energy to kT/2, 
and equation (25) is the result. Thus in the context of long range interaction models 
to which Maier-Saupe theory is known to apply, we may calculate (a2) by the direct 
method employed above or by adding together the effects of periodic distortion 
modes, and the two approaches yield answers which, for large m at any rate, are 
precisely the same. 

The lessons to be learnt from this analysis are that the Maier-Saupe theory does 
include the effect of director fluctuations, but that it gives too much weight, for given 
S, to the fluctuation modes of large q, and correspondingly too little weight to the 
modes of small q, to provide an accurate description of their effects in real nematics 
where the interaction is certainly short range. The two curves in the figure show how 
much the modes contribute per unit range of qa to the magnitude of (a2), or more 
precisely, if ( h 2 )  is not small, to - (2/3) In (P2(cos 6)) (see equation (2)). The quantity 
plotted there as a function of qa, from zero up to an ultimate cut-off at (671?)”~ = 3-90, 
is (V$/n2a)($(qa)2) .  The quantity ($(qa)’) has been calculated in two ways, (a) 
from equation (25), which applies to the long range interaction models which Maier- 
Saupe theory describes exactly, and (b)  from equation (1). To make the comparison 
specific, curve ( h )  has been plotted for the simple cubic Lebwohl-Lasher model [5 ] ,  in 
which the interaction takes the form 

but acts between nearest neighbours only; here yi, is the angle between the long axes 
in the ith andj th  molecules, and P2(cosyi,) has the property that it averages to S2 if 
there are no correlations between 4, and 4, but not otherwise. Curve (b) is based upon 
equation (10) (with qx = qv = qz)  in addition to equation (l), and upon an equation 
for K in the limit of small q which is derived from the present author’s earlier work 
on the Lebwohl-Lasher model [22], namely 

k T  1 
a a(l)ln(l/S)’ 

K(0) = - 
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Director fiuctuations in nematics 103 

(This equation may be obtained from equations (17) and (6) in [22], or from the more 
detailed analysis in [24]. The numerical factor a ( l )  is close to 1.3 in a very large 
specimen.) The two curves are plotted for the case kT = 4 6 ,  which corresponds in 
the notation used by Zannoni [27] to T* = 1 .  The values of S that are appropriate 
at this temperature have been used, namely 0.74 for curve (a )  and 0.6 for curve (h). 
These values differ because the Maier-Saupe theory, when applied to the Lebwohl- 
Lasher model, predicts values for S which are significantly higher at given T than 
those computed for the same model by Zannoni and others; the figure of 0.6 used for 
curve (b )  has been read off from figure I in [22], where some of Zannoni's results are 
shown, together with curves based on the present author's theory which are still in 
good agreement with Zannoni's results at T* = 1, even though S is here less than the 
limit of 0.75. 

Because the two curves in the figure intersect well to the right of its centre, at about 
qa = 2.9, we may infer that, if the Maier-Saupe theory is to be used to predict values 
of S for the Lebwohl-Lasher model, the fact that it underestimates the effects of 
director fluctuation modes of small q will contribute more error in one direction than 
the fact that it overestimates the effects of large q modes will contribute in the other. 
It looks from the figure as though we might end up with about the right value for S 
by multiplying the raw Maier-Saupe predictions by a renormalization factor to allow 
for modes up to a cut-off at  say qa = 1.5. At T* = 1 the appropriate factor would, 
according to equation (6), (4) and (28), be about 0.85, just about what is required to 
reduce 0.74 to 0.6. Even after such renormalization, however, the description of the 
Lebwohl-Lasher model which the Maier-Saupe theory would provide would still be 
defective. The deficiencies of the theory in a situation where the alignment is due to 
short range interactions are further exposed in the next section. 

4. Long range correlations 
For a nematic in which the intermolecular interactions are short range, the result 

equivalent to that in equation (21), obtainable directly from equations (4) and (9), is 

l / 3  
( b )  2 = "(") . 

Ka n4m 

The fact that (a2) varies like m-'13 rather than like m-'  is an indication that in real 
nematics, as opposed to the idealized models with long range interactions to which 
Maier-Saupe theory applies, there are significant correlations of orientation between 
pairs of molecules, correlations, in particular, between 4, and 4,. de Gennes was the 
first to point out [28] that these correlations must exist and to predict that they decay 
slowly with separation, like l /R,] .  A simple physical picture discussed by the present 
author supports this prediction [29], and it has been more than adequately confirmed 
by computer simulation work on the Lebwohl-Lasher model [27]. 

The following argument uses ideas developed here to demonstrate that, if there are 
no correlations of orientation between well separated molecules in the absence of 
director fluctuations, then such correlations arise when the fluctuations are switched 
on. Consider a Lebwohl-Lasher nematic containing N molecules as an assembly of 
(N/rn) domains, with m % 1.  Imagine the (2N/m) modes which are needed to provide 
a complete description of the director field on this scale of resolution to be in some 
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104 T. E. Faber 

way suppressed, so that n is everywhere coincident with (n) and the order parameter 
defined by equation (5) is So .  Suppose that in this state there are no correlations 
between and 4, as long as the ith andj th  molecules inhabit different domains. In 
that case the excitation of a single mode which rotates the two molecules about the 
same axis through infinitesimal angles tji and I), will change the average value of 
P,(cosy,,) (the average here is over #,,, and el.,) from Si to 

It follows from this result, after a further average over all directions for q and over 
all pairs of molecules which are separated by the same distance R (see [20]) for a fuller 
explanation), that excitation of all (2N/m) modes reduces (P2(c0s y(R))) from S; to 

3kT qcR sinp 
n KR J0 7 "1' 1 - 3 ( 8 )  + 2 

Excitation of the modes also reduces the order parameter from So to S, and from 
equations (6) and (31) we may obtain the result 

(P,(co~y(R))) - S2 = - 

or, if R is appreciably bigger than the domain size (i.e. if qc R p 1 as well as rn % 1) 
and if K is given by equation (28), then 

The difference which equations (32) and (33) describes, which would of course be zero 
in the absence of correlations in 4, constitutes a convenient measure of the strength 
of the correlations that in fact exist. They are evidently weak under the conditions for 
which equation (33) is strictly valid, i.e. when R B a. The computer simulation results 
of Zannoni [27], however, which are rather well described by the present author's 
more detailed theory [22], show that the ratio continues to rise, roughly like 1/R, as 
we proceed to smaller values of R, and that between nearest neighbours the corre- 
lations are quite marked. 

In view of these correlations and of the matters discussed in 8 3, it is questionable 
whether we should rely on the Maier-Saupe theory for data-fitting purposes to quite 
the extent that we do. The theory is so simple and convenient that it is tempting to 
believe it to be essentially correct. It is tempting to believe that even if the arguments 
upon which Maier and Saupe constructed their theory in the first place are not 
reliable, their formula for the orientation-dependent free energy (equation (16)) is 
nevertheless a fair approximation to the truth, which can be made a better approxi- 
mation still by adding to the internal energy (equation (15)) some extra terms, 
involving higher powers of S perhaps, or higher order parameters such as (P4(cos 0)); 
many such modifications of Maier-Saupe theory have been suggested, which yield 
closer fits to experimental data at the expense of extra adjustable parameters [30-331. 
In all of these modifications, however, the Maier-Saupe expression (also attributable 
to Onsager [34]) for the orientation-dependent entropy, i.e. equation (17), is preserved 
unchanged and that expression cannot be adequate if the orientations of adjacent 
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Director fluctuations in nematics 105 

molecules are correlated. Sluckin and Shukla [35] have, it is true, succeeded in deriving 
equation (16) by a powerful analysis based upon the direct correlation function and 
appear to have conferred respectability upon the mean field approach by doing so. 
But their derivation depends upon some very drastic approximations, and the point 
just made about the entropy suggests that these approximations cannot in practice be 
justified. 

5. Cluster expansion theories 
There is a recognized procedure for improving upon the mean field descripton of 

an ordered state, first established on a secure footing by Strieb, Callen and Horwitz 
[36] in a paper which referred to the Heisenberg ferromagnet. As applied to nematics, 
this procedure involves an initial postulate that there exists a mean field which favours 
orientation along (n), but terms are added to the free energy expression to take 
account in detail of the interactions between molecules within what is called a cluster. 
For a given cluster size. all possible shapes of cluster are taken into consideration 
which satisfy the condition that every member has at least one other member among 
its nearest neighbours. In the context of the Lebwohl-Lasher model the mean field 
may be written as us,  and s may be found in the same way that S may be found in 
the Maier-Saupe theory, that is to say by varying it so as to minimize F. Maier-Saupe 
theory may be regarded as a cluster expansion theory for which the number of 
particles in the cluster, which will here be denoted by m, , is unity. In this case S and 
S are the same, but the two are not identical for larger m, . Clusters are surrounded 
by cages of m, nearest neighbours, and the mean field represents the effects of 
interactions between members of the cluster and members of the cage. When m, is 
bigger than m , ,  as is the case when the clusters are small, these effects are obviously 
of dominating importance, but in the limit of very large clusters rn, is much less than 
m, , and in that limit s clearly tends to zero in a way that S does not. But the cluster 
expansion approach enables both quantities to be determined, together with other 
quantities, such as (P4(cos 0)). 

Cluster expansion theories applicable to lattice models of nematics have been 
worked out for m, = 2 [37,38], 3 [39] and 4 [40]. They clearly provide a much more 
realistic picture than the Maier-Saupe theory for the correlations of orientation 
between nearest neighbours, and they predict the nematic-isotropic transition tem- 
perature with greater accuracy. The predicted values of (kT, , /u)  for the Lebwohl- 
Lasher model are 0.2202 (m, = l), 0,1933 (m,  = 2), 0.1933 (m,  = 3), and 0-1903 
(m,  = 4). These are evidently converging, though not very fast, on the best computed 
value, evaluated for a sample with 30 x 30 x 30 molecules with periodic boundary 
conditions, which is 0.187 [41]. However, even a four-particle cluster expansion theory 
cannot describe correlations much beyond the nearest-neighbour range. How good a 
description may it be expected to provide of the magnitude of S? 

The answer to this question surely depends upon how large (6:) is, where 6, 
represents the angle between (n) and a director n, defined, as in 9;3, for the m, 
molecules which constitute the cage. In so far as the mean field u s  represents 
interactions with members of the cage, it should presumably favour alignment along 
n, rather than along (n) as is assumed. It is probably an over simplification to say 
that on this account the results of cluster expansion theory need to be renormalized 
by a factor of ( 1  - 3(S:)/2), since if low q director fluctuation modes are significant 
they should really be allowed for in the initial expression for the free energy; the 
contribution which they make to the free energy will depend upon K, which in turn will 
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106 T. E. Faber 

depend upon s a n d  S, and the value of S which minimizes Fmay therefore change when 
this contribution is included. But the results of cluster expansion theory certainly need 
a correction of some sort, and it seems likely to be a significant one unless (6:) 4 1. 

The results obtained earlier in this paper allow us to estimate the deviation of nI2 
from (n), but not the deviation of n,; here q2 is the director for the domain which 
includes the cluster as well as the cage. When m, is only 4, however, nI2 is determined 
primarily by the orientations of the cage molecules, since these outnumber the cluster 
molecules by a ratio of over four to one: m,, when m, is 4, may be 16, 17 or 18, 
depending upon the shape of the cluster. Thus we may plausibly estimate, using 
equation (29), that 

Equations (34) and (28) suggest that the value of (6;) for a four-particle cluster 
expansion theory in the context of the Lebwohl-Lasher model is liable to be about 
0.1 at T* = 1 .  This is not small enough to be obviously negligible. 

6. The cluster Monte Carlo method 
Although most computer simulations of the Lebwohl-Lasher model have involved 

cubic arrays of molecules with periodic boundary conditions, Zannoni [42] has 
presented results obtained for arrays which are surrounded by a layer of ghost 
molecules, situated on points of the same simple cubic lattice, whose axes are distri- 
buted around a fixed (n) with a Maier-Saupe distribution function consistent with 
the value of S computed for the array, or cluster, itself. He has called this procedure 
the cluster Monte Carlo method and has suggested that it is a better way of modelling 
the behaviour of an infinite array, which generates results that are less dependent on 
array size. What is of particular interest here about Zannoni’s results is that he has 
computed the quantity m, I (Xmdx) (see equation (22)) or So for his clusters, as well as 
S, which makes it possible to infer values for (d f ) ,  the mean square deviation from 
(n) of the director n, within the cluster, with the aid of (6). (In Zannoni’s notation, 
S is (Pz) while So is (Pz),..) Some of his results are reproduced in the first four 
columns of the table below. 

The boundary conditions used in the cluster Monte Carlo method allow (n) to 
be predetermined in a way that periodic boundary conditions do not, and for a cluster 
of n x n x n molecules they appear to ensure that, on a coarse scale at  any rate, the 
local director coincides with (n) on the surfaces of a cube of side (n + 1)a. (The 
qualification in that statement is needed because the ghost molecules are not com- 
pletely ordered, which means that on a fine scale the boundary conditions for the 
director are not clearly defined.) The allowed values of q.<, q, and q; for coarse scale 
(low q) distortion modes are therefore restricted to a single octant in q space and take 
values (hn/(n + l)a), (kn/(n + 1)a) and (In/(n + 1)a) respectively, where the integers 
(h, k ,  1 )  may each take values 1, 2, etc. Consider the effect of exciting a single low-q 
mode in a sample in which 
parameter is initially S‘ say. 

and 

S” = S’(1 - 

n, is initially parallel to (n) and in which the order 
Following its excitation we have 

s = S’(1 - t (P) )  (35) 
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Director fluctuations in nematics 107 

Results for the Lebwohl-Lasher model computed using the cluster Monte Carlo method [42]. 

( 6 : )  ( 6 : )  
T* S so computed calculated 

0.90 
0.95 
1 .oo 
1.05 
1.10 
1.125 

0.90 
0.95 
1 .oo 
1.05 
1.10 
1.125 

m, = 125 (5 x 5 x 5 )  
0.715 0.727 0.01 1 
0.688 0.700 0.012 
0.647 0.660 0.0 13 
0.580 0.597 0.020 
0.508 0.527 0.025 
0.456 0-477 0.03 1 

m, = l000(10 x 10 x 10) 
0.706 0.7 10 0.004 
0.673 0.677 0.004 
0.630 0.635 0.005 
0.574 0.579 0.006 
0.469 0-477 0.01 1 
0.375 0.384 0.0 16 

0.01 1 
0.0 12 
0.015 
0.0 18 
0.023 
0-027 

0.004 
0.005 
0.006 
0.007 
0.010 
0.013 

where the overbars indicated averages over all the molecules in the cluster a t  a given 
instant in time, while the angled brackets indicate a time average. Hence the excitation 
causes S to fall below S, by a factor 

(1 - W’>) (37) 
and causes n, to deviate from (n) by a mean square angle ($’). Now for many of 
the modes ($’) vanishes, but it does not do so when (h ,k ,1 )  are all odd, and in 
particular it does not do so for the (1,1,1) modes. It is primarily these two modes 
which are responsible for the distinction between S and So which Zannoni has 
observed. 

Deviation of a formula for ($’), using ideas discussed in related contexts in 
earlier papers [22,24], is straightforward in principle, and only the rather complicated 
result, which incidentally incorporates results which have been quoted as equations 
(10) and (28), will be given here. It is (for odd values of h, k and 1 only) 

(’“’ ” ‘)’) = (n + 1)3[3 - cos (hn/(n + 1)) - cos (kn/(n + 1)) - cos(ln/(n + l))] 
4 4  1) In (1 IS) 

x [ n3 tan (A) tan (&) tan ( &)Ip2. (38) 

The right hand side of this may be summed over h, k and I without difficulty because 
the convergence is rapid; the (1, 1,3) modes are just about significant but the (1,3,3) 
modes are not. Allowing for the two polarizations for each q we find 

where Cis  0.0171 for n = 5, and 0.0061 for n = 10. The numerical factor a(1) is size 
dependent. We may use 1.54 when n = 5 and 1-44 when n = 10 (see table 1 of [24]), 
though these figures were worked out assuming periodic boundary conditions, and in 
the present context they may not be entirely appropriate. 

Here we have a first estimate for (d;), but it needs a small correction. Because the 
m, = 6n2 ghost molecules which constitute the cluster’s cage are endowed with the 
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108 T. E. Faber 

Maier-Saupe distribution function, the director n2 is not firmly tied to (n) as we have 
supposed but may fluctuate about it, for reasons explained in 9 3. A better estimate 
for (6:) may be obtained by adding to equation (39) an estimate for (6:) based upon 
equation (25), viz. 

The figures listed in the final column of the table have been calculated from equations 
(39) and (40). The agreement with the computed values is good except at the highest 
temperatures, where the assumptions that lie behind equation (28)  for K(O), for 
example, are certainly breaking down. It is surely good enough to confirm that the 
analysis presented here is essentially correct, and therefore to call into question 
Zannoni’s claim that the effects which he has computed reveal a limiting length for 
director fluctuations in his model which is several times larger than a, i.e. a wavevector 
cut-off such that q,a is significantly less than 3.9. 

It may be added that the values of (6:) observed for the cluster Monte Carlo 
model and predicted by this analysis are smaller by a factor of about 3 when of n = 5, 
and by a factor of about 5 when n = 10, than the values of (d2) predicted by equation 
(29) for clusters which are embedded in an infinite lattice rather than in a cage of ghost 
molecules which are artificially constrained. When it forms part of an infinite lattice, 
of course, the cluster can be thought of as being at  the centre of an infinite series of 
cages which enclose one another, like Chinese boxes. Fluctuations of the director 
within every one of these cages may contribute to the fluctuations of director for the 
cluster itself. 

7. ESR andNMR 
Zannoni’s suggestion [42] that there may be a limiting length associated with 

director fluctuations which is several times larger than a echoes a suggestion which 
is to be found in an earlier paper by Luckhurst [43]. Luckhurst there discusses 
the asymmetric line shapes observed by Brooks, Luckhurst and Pedulli [44] in their 
work on the electron spin resonance of probe molecules dissolved in nematic 4,4’- 
dimethoxyazoxybenzene (PAA) and from the degree of asymmetry he deduces values 
for a mean square angle which he calls 9;. In the notation of the present paper this 
appears (though see later) to correspond to (a2). It varies with temperature between 
0.01 1 and 0.025, and such values, if interpreted in terms of equation (4), imply values 
for q,a of the order of 0.1. Does this mean, as Luckhurst seems to suggest, that there 
is a cut-off of absolute significance which lies well below the ultimate limit discussed 
in 8 2  (q,a N 3.9)? 

Luckhurst’s analysis is based upon the fact that ESR lines are symmetric in the 
fast-motion limit where the hyperfine splitting All is less than all the angular frequencies 
w which are present in the autocorrelation function which describes the rate at which 
molecules change their orientation. Asymmetries are to be attributed, therefore, to 
relatively small q director fluctuation modes which contain frequencies such that 
w < AR. That being so, we may presumably set out to estimate Luckhurst’s 9; using 
an extension of equation (4) 
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Director Jluctuations in nematics 109 

with 

K 
a = - + + .  

1 
Equation (4) includes in the shape of the self-diffusion coefficient D, which does not 
appear in equation (1 l), an allowance for some of the effects of diffusion which was 
first suggested by Pincus [16]. Now if conditions are such that (Anla) % qf. the 
integral on the right hand side of equation (41) does not depend upon the precise 
magnitude of AR; the integral reduces back to equation (4) again, in fact, and the only 
way to fit this to Luckhurst’s estimates of /3: is indeed to choose a relatively low value 
for qc . If (Anla)  G O f ,  however, qc becomes the irrelevant quantity; the integral now 
reduced to 

It appears that for the spin probe used by Brooks et al. [44] AR was about 5 x lo8 SKI, 

while such viscosity measurements as are available for PAA suggest that 4 may have 
been about 3 x lop9 m2 s-’ .  Then (ARd/a)1/2 would have been about 0.3. That is 
small enough compared with our estimate of about 3.9 for q,a at the ultimate cut-off 
to make equation (43) the appropriate version of equation (41) to use, and with 
a N 3 x lop9 m2 s-I it can be fitted to Luckhurst’s data for @ quite successfully. We 
may conclude that, just as the relatively low cut-off suggested by Zannoni’s compu- 
tations is determined by the size of the samples which he has investigated, so the 
relatively low cut-off suggested by the ESR data of Brooks et al. [44] is determined 
by the viscosity of PAA rather than by anything more fundamental than that . 

Since the early work of Brooks et al. [44] there have been more intensive studied 
of ESR line shapes for spin probes dissolved in nematics [45,46]. The results have been 
subjected to an analysis which is much more sophisticated than the one outlined 
above, based on the theoretical model of Polnaszek, Bruno and Freed [47]. Although 
the fits which have been secured by variation of the principal adjustable parameter in 
the theory are in many cases quite good ones, the fundamental assumptions (a) that 
director fluctuations are small, and (b) that individual molecular reorientation occurs 
on a time scale that is distinctly more rapid than anything that director fluctuations 
can describe, are not wholly convincing for reasons that have been stated in $2. 

The problem of how to explain ESR line shapes has much in common with the 
problem of spin relaxation in NMR, which was one of our starting points in $2. 
Reference was made in that section to three early papers on NMR in nematics which 
concern estimates of q, which exceed lo9 m-I. (In one of those papers [19] the cut-off 
is expressed in terms of a frequency v, rather than a wavevector, but the figure of 
8.1 GHz quoted for PAA seems to be equivalent, if a is about 3 x m2 s-I, to a 
value for qc of about 4 x lo9 m-’ .) Since those papers were published there has been 
further work on the subject, particularly by Noack and his co-workers who have used 
elegant field cycling techniques to extend their measurements of TI, in magnetic fields 
that may be less than that of the earth, to resonant frequencies vo as low as l00Hz 
[48]. This work has made plain that the frequency dependence of TI is more complex 
than was at first appreciated. Thus it is only over the restricted range between 1 and 
l00kHz that 1/T, can normally be regarded as proportional to v;’”. Above this 
range, according to Noack et al. [48], the proton relaxation rate is markedly affected 
by factors which have little to do with director fluctuations, such as self-diffusion (not 
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110 T. E. Faber 

fully allowed for by the inclusion of D in equation (42)) and molecular rotation. The 
data may be fitted by formulae which in principle allow for these extra factors, but 
the number of adjustable parameters is too large for it to be said that the fit proves 
the formulae to be correct. Indeed, in so far as these formulae are based on an 
assumption that the different types of motion allowed for are statistically independent 
of one another they are almost certainly incorrect; that seems to be the message of a 
paper by Freed [I  I], which has relevance both to ESR and to NMR. (See also [lo]. 
The authors of this paper, which is based on the work of Freed, obtain results for the 
effect of director fluctuations on the alignment of a spin probe which look as though 
they should apply also to the alignment of a molecule of the nematic solvent, but 
which bear no resemblance to the equations which have formed the starting point of 
the present paper, namely equations (4) and (6). The discrepancy appears to have its 
roots in an assumption made by the authors, though not by Freed, that the potential 
of mean torque which is seen by a solute molecule fluctuations in magnitude but not 
in direction.) One of the adjustable parameters in the formulae used by Noack et al. 
remains yc, but its influence on the measurements seems to be fairly small, even at the 
highest accessible frequencies, and to be masked by other effects. Thus NMR data still 
suggest that yc exceeds lo9 m-’, but they do not warrant a more precise conclusion 
than that. 

Noack et al. have found that at low fields, where yE is totally irrelevant, the curve 
for 1/T, versus resonant frequency invariably flattens out, and they have interpreted 
this saturation in terms of a second limit to the director fluctuation spectrum, at a low 
wavevector (or equivalently at a low frequency) instead of a high one. To match their 
data, this lower limits needs to be set at roughly lo6 m-’ for PAA, or else at roughly 
1 kHz. It has been suggested by Zupancik et al. [49] that it has to do with disclinations, 
but we would surely expect disclinations to be annealed out by the large fields which 
are applied during the polarization phase of a field-cycling measurement, and in any 
case the length scale associated with disclinations, presumably their distance apart, 
can scarcely be as small as m. Freed [I I] has shown in Appendix B of his paper 
that field quenching of the director fluctuations (see § 8) is irrelevant, especially at the 
very low fields which are used during the evolution phase, and that there is no reason 
to believe that conventional motional narrowing theory breaks down at frequencies 
of 1 kHz or less. Hence the low frequency saturation phenomenon observed by Noack 
et al. remains unexplained. 

Since 1/T, remains proportional to v,’” down to 1 kHz at any rate, it follows that 
the molecules in a nematic can recognize elements of coherence in the director 
fluctuations that extend over times of up to 1 ms, and this may seem surprising in view 
of the results of experiments on dielectric dispersion in nematics, which show that the 
relaxation time 711 for end-to-end inversion of a molecule is only about 1 ps [50,5 I]. 
The apparent paradox may be formally resolved by noting that the time dependent 
correlation functions on which T, depends are not affected by a transform- 
ation which replaces 0 by (0 + R )  [52]. However, we need to recognize that mol- 
ecules cannot invert without passing through states of intermediate 0, and that 
the motions which lead to inversion are not different in kind from some of the motions 
with which theories of spin relaxation in ESR and NMR are concerned. It would 
surely be of interest, therefore, to explore the relation between the theories of spin 
relaxation in ESR and NMR to which reference has been made and current theories 
of T~~ [53,54]. To date, the two classes of theory seem to have been developed in 
isolation. 
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Director fluctuations in nematics 111 

The present author’s view is that no theory of 1/T, or of zll can be entirely reliable 
which does not recognize the existence of the correlations referred to in 5 4, and that 
the best hope of taking these into account lies in further development of the idea that 
all the misalignment of molecules in a nematic can be described in terms of director 
fluctuations, even on a microscopic scale. Treatment of the l /T1 problem from this 
point of view is relatively straightforward, at any rate for temperatures which are not 
too close to TN,, and the corrections which appear to be needed to the results laid 
down by Pincus [16] and Lubensky [ 5 5 ]  are of a relatively trivial nature [21]. A first 
attempt at a treatment of T,, in the same spirit is outlined in 9 9 .  

8. Field quenching of director fluctuations 
When an electric or magnetic field is applied parallel to (n) the energy associated 

with a periodic distortion mode of amplitude $ is affected, and the mean square 
amplitude in thermal equilibrium may, therefore, be less than the value given by 
equation (1). In the electric case, for a nematic which has a positive dielectric 
anisotropy (i.e. c3 > cl  , where c3 is the relative permittivity when the field E is along 
(n) and cl  is the relative permittivity when the field is perpendicular to (n)) we have 
[11 

where 

Hence it follows from equation (4) that the field should change ( S 2 )  be approximately 

The effect, as de Gennes has noted [I], is proportional to the modulus of the field 
strength. It has been observed in computer simulation studies of the Lebwohl-Lasher 
model [56], and the results obtained in that way are closely reproduced by a theoretical 
analysis based on the ideas outlined here [23]. It has also been observed experimen- 
tally; references may be found in a useful review of the subject by Dunmur and 
Palffy-Muhoray [57] .  

Experimentally, it is difficult if not impossible to achieve values of r that are less 
than about lop7 m, which means that if qc is over 10’ m-’  we may safely replace the 
factor tan-’ (q, t )  in equation (46) by x / 2 .  A priori, the precise magnitude of qc would 
then seem to be irrelevant to the results of any field quenching experiment. However, 
in the course of trying to explain their own measurements of the small increase in the 
birefringence (n3 - n , )  shown by thin nematic films with homeotropic alignment 
when an electric field is applied across them, Dunmur et ul. [58,59]  have reached a 
different conclusion. Their argument may be paraphrased as follows. Since the 
birefringence is very nearly proportional to the order parameter, it seems to follow 
from equation (6) that 

A(n3 - n , )  - A S  - 3 So A ( Sz ) 
(47) - 

(4 - 4 )  S 2 s  . 
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112 T. E. Faber 

Then if tan- I (q,  t) can indeed be replaced by 4 2  we have 

and equations (6) and (4) allow us to rewrite this result as 

Here q, has re-appeared, because of its influence on the factor (Sols) .  With this 
argument in mind, Dunmur et al. [58,59] have treated qc, or equivalently (Sols) ,  as 
an adjustable parameter in fitting their thin film data. They obtain some measure of 
agreement with theory by choosing values in the range 3 x 10'-6 x lo9 m-'. 

Unfortunately, there is a subtle fallacy in this argument. We are not entitled to rely 
on equation ( 6 )  in its approximate form unless (a2) Q 1, and in that case the 
distinction between So and S is negligible. The more exact result, derivable with the 
aid of equation (2) and the exponential limit theorem, is 

and differentiation of this result yields 

without the (Sn/S) factor which appears in equation (48). The fact that Dunmur 
et al. [58,59] need values of ( S , / S )  which differ from unity to fit their results is 
presumably a sign that their observations are affected by factors which the theory does 
not take into account. 

It should be added that the effect observed by Dunmur et al. [58 ,59 ]  is not linear 
in the field strength at low fields, and that they have sought to dispose of this 
discrepancy, with rather limited success, by introducing a second adjustable parameter. 
They point out [59] that in a film of thickness D the component of q perpendicular 
to the film, say q=, cannot be less than x / D ,  and suggest that on this account the lower 
limit of the integral in equation (46) should be some wavevector qmln, of the order of 
x / D ,  rather than zero. 

9. The end-to-end inversion process 
At the end of 0 7, we touched on the question of how the process which determines 

the longitudinal dielectric relaxation time t,, may be discussed using the language of 
director fluctuation theory, language which allows the correlations of orientation 
which exist between neighbouring molecules in a nematic to be recognized. Here the 
question will be examined with particular reference to the Lebwohl-Lasher model, 
though the suggested answer may have wider significance. 

A fluctuation which locally rotates n through an angle 71 may in principle cause 
the inversion of a number of spins for as long as it persists. In most such fluctuations, 
however, the inversion is purely temporary; the molecules are carried back to their 
initial orientations when the distortion associated with fluctuation dies away. Thus, 
if the molecules carry a longitudinal electric moment, and if the nematic is initially 
polarized along (n). the excitation and subsequent decay of the fluctuation leaves 
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the polarization unaffected. To explain the relaxation of polarization we are obliged 
to consider processes in which adjacent molecules reverse their orientation rela- 
tive to one another in a way that, at any rate until the next fluctuation occurs, is 
permanent. 

Consider therefore a Lebwohl-Lasher model nematic, at such a low temperature 
that S is close to unity, in which a fluctuation has rotated the molecule with coordi- 
nates (O,O, + 4 2 )  about the x axis through a large angle + 6, and the molecule with 
coordinates (O,O, - a / 2 )  through - 6 ,  about the same axis. If these two molecules 
were to be regarded as parallel before the fluctuation arose, they become anti-parallel 
when 6, reaches 742. The other molecules may be rotated too, of course, and there is 
one particular pattern for these other rotations which minimizes the energy involved 
in the fluctuation as a whole. In so far as the nematic may be treated as a continuum, 
the optimum distortion pattern may be determined by solving the appropriate Euler- 
Lagrange equation subject to the boundary conditions that 6, = & 6, at z = f a/2 .  
Since K ,  = K,  = K3 for the Lebwohl-Lasher model, the Euler-Lagrange equation is 
V26, = 0 [29], and the relevant solution is 

6,a’z 
4(X* + y2 + 2)3’2’ 

6, = 

it has a singularity at the origin, of course, but there is no molecule at  this point. The 
energy associated with the distortion may now be crudely estimated by integrating the 
energy density indicated by continuum theory, namely 

over all space outside a central sphere of radius say a ,  which is large enough to contain 
only the two molecules of (O,O, + a / 2 ) ,  and by adding the energy of interaction 
between these two. The result is 

(53) 
z2 
- 6iKa + $u(l - cos2 do). 
12 

The low temperature limit for Ka in the Lebwohl-Lasher model is 4 2  (see for example 
equation (31) in [22]). Hence (53) describes an energy which passes through a first 
maximum of 0 . 3 4 2 ~  when 6, is a little over 4 4  and which climbs back up to 0 . 3 2 3 ~  
at 6, = z / 2 .  Now once So has reached 4 2  a very small adjustment of the molecules, 
which should cost a negligible amount of energy, will suffice to shift the singularity 
from the point (O,O, 0) to say (O,O, a) and subsequent relaxation of the fluctuation will 
leave the molecule at (O,O,a/2) permanently inverted. 

The picture of the inversion process presented here is very different from the 
picture of rotational diffusion in a mean field which Martin et al. [53] assumed, and 
from the picture of a single jump process made possible by free volume which lies 
behind the theory of Zeller [54]. It implies that end-to-end inversion in the Lasher- 
Lebwohl model should be an activated process, and that the activation energy in the 
low temperature limit should be about 4 3 .  This is much less, of course, than the 
energy of 3u/2 which is needed to invert a single molecule within a cage of perfectly 
aligned neighbours whose orientations remain fixed during the process. The acti- 
vation energy may be expected to decrease on heating as S and K diminish, but a more 
elaborate calculation would be needed to establish the rate of decrease. 
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10. Conclusions 
The principal conclusions reached in this paper may be summarized as follows. 

(i) If the director field of a nematic is regarded as describing how the molecules 
within it are oriented at any one instant, rather than as describing the 
constraints to which the nematic is subject, it can be defined on any scale of 
resolution that is appropriate for the problem in hand. The finer the scale 
chosen, the larger the director fluctuations appear to be. 

(ii) The fluctuations can usefully be discussed in terms of a set of periodic 
distortion modes, though results obtained in this way are not entirely reliable 
when the fluctuations are really large, i.e. when the finest scale is chosen and 
when T is close to TN,. On the finest scale that has physical meaning the 
fluctuation spectrum cuts off where q,a is about 3.9. 

(iii) Mean field theories such as that of Maier and Saupe include director fluctu- 
ations, but for given S they put too much weight on high q modes and too 
little on low q modes. Put in another way, they ignore the correlations of 
orientation between neighbouring molecules which characterize nematics 
(except in the ideal case of a nematic which is aligned by interactions of long 
range). They therefore overstate the entropy of misalignment. 

(iv) Cluster expansion theories offer considerable improvements, but they cannot 
be expected to converge rapidly with cluster size because the correlations are 
long range. Predictions of S based upon a four particle cluster expansion 
theory are likely to need significant correction for the effects of director 
fluctuations. 

(v) Estimate of qc which appear in the literature, based on computer simulation 
studies using the cluster Monte Carlo method, or an analysis of line shape 
anisotropy in ESR, and on field quenching experiments, are not to be trusted. 
In two out of the three cases examined, the data upon which these estimates 
are based can be fully explained without cutting off the fluctuation spectrum 
prematurely . 

(vi) It is seriously inconsistent to allow for director fluctuation modes right up to 
the ultimate cut-off where qca is about 3.9 and to suppose at the same time 
that molecules are free to undergo rotational diffusion about the local 
director. 

(vii) The end-to-end inversion process which determines the longitudinal dielec- 
tric relaxation time can be described in terms of director fluctuations alone. 

I am grateful to three referees who criticized a first draft of this paper and made 
clear to me that it had to be rewritten. The rewriting was done at the California 
Institute of Technology, and I am also grateful for the facilities made available to me 
there. 
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